Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724918

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Gene Expression Profiling , Hordeum , Metabolome , Stress, Physiological , Transcriptome , Hordeum/genetics , Hordeum/physiology , Hordeum/metabolism , Stress, Physiological/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
Neuromolecular Med ; 26(1): 9, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568291

Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αß and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αß, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.


NF-E2-Related Factor 2 , Proteasome Endopeptidase Complex , Pyrazines , Humans , Animals , Mice , NF-E2-Related Factor 2/genetics , alpha-Synuclein/genetics , Mice, Transgenic , Ubiquitins
4.
PeerJ ; 12: e16984, 2024.
Article En | MEDLINE | ID: mdl-38426132

Background: Wheat (Tritium aestivum L.) production is critical for global food security. In recent years, due to climate change and the prolonged growing period of rice varieties, the delayed sowing of wheat has resulted in a loss of grain yield in the area of the middle and lower reaches of the Yangtze River. It is of great significance to screen for natural germplasm resources of wheat that are resistant to late sowing and to explore genetic loci that stably control grain size and yield. Methods: A collection of 327 wheat accessions from diverse sources were subjected to genome-wide association studies using genotyping-by-sequencing. Field trials were conducted under normal, delayed, and seriously delayed sowing conditions for grain length, width, and thousand-grain weight at two sites. Additionally, the additive main effects and multiplicative interaction (AMMI) model was applied to evaluate the stability of thousand-grain weight of 327 accessions across multiple sowing dates. Results: Four wheat germplasm resources have been screened, demonstrating higher stability of thousand-grain weight. A total of 43, 35, and 39 significant MTAs were determined across all chromosomes except for 4D under the three sowing dates, respectively. A total of 10.31% of MTAs that stably affect wheat grain size could be repeatedly identified in at least two sowing dates, with PVE ranging from 0.03% to 38.06%. Among these, six were for GL, three for GW, and one for TGW. There were three novel and stable loci (4A_598189950, 4B_307707920, 2D_622241054) located in conserved regions of the genome, which provide excellent genetic resources for pyramid breeding strategies of superior loci. Our findings offer a theoretical basis for cultivar improvement and marker-assisted selection in wheat breeding practices.


Genome-Wide Association Study , Quantitative Trait Loci , Phenotype , Triticum/genetics , Plant Breeding , Edible Grain/genetics
5.
Theor Appl Genet ; 137(3): 58, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38407646

KEY MESSAGE: SNP-based and InDel-based GWAS on multi-environment data identified genomic regions associated with barley grain size. Barley yield and quality are greatly influenced by grain size. Improving barley grain size in breeding programs requires knowledge of genetic loci and alleles in germplasm resources. In this study, a collection of 334 worldwide two-rowed barley accessions with extensive genetic diversity was evaluated for grain size including grain length (GL), grain width (GW), and thousand-grain weight (TGW) across six independent field trials. Significant differences were observed in genotype and environments for all measured traits. SNP- and InDel-based GWAS were applied to dissect the genetic architecture of grain size with an SLAF-seq strategy. Two approaches using the FarmCPU model revealed 38 significant marker-trait associations (MTAs) with PVE ranging from 0.01% to 20.68%. Among these MTAs, five were on genomic regions where no previously reported QTL for grain size. Superior alleles of TGW-associated SNP233060 and GL-associated InDel11006 exhibited significantly higher levels of phenotype. The significant MTAs could be used in marker-assisted selection breeding.


Hordeum , Hordeum/genetics , Genome-Wide Association Study , Plant Breeding , Alleles , Edible Grain/genetics
6.
J Adv Res ; 2023 Nov 19.
Article En | MEDLINE | ID: mdl-37989471

INTRODUCTION: Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES: We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS: TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS: In MPP+-induced cell model, TBN (30-300 µM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION: TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.

7.
Front Plant Sci ; 14: 1178065, 2023.
Article En | MEDLINE | ID: mdl-37229117

MADS-box transcription factors are crucial members of regulatory networks underlying multiple developmental pathways and abiotic stress regulatory networks in plants. Studies on stress resistance-related functions of MADS-box genes are very limited in barley. To gain insight into this gene family and elucidate their roles in salt and waterlogging stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in barley. A whole-genome survey of barley revealed 83 MADS-box genes, which were categorized into type I (Mα, Mß and Mγ) and type II (AP1, SEP1, AGL12, STK, AGL16, SVP and MIKC*) lineages based on phylogeny, protein motif structure. Twenty conserved motifs were determined and each HvMADS contained one to six motifs. We also found tandem repeat duplication was the driven force for HvMADS gene family expansion. Additionally, the co-expression regulatory network of 10 and 14 HvMADS genes was predicted in response to salt and waterlogging stress, and we proposed HvMADS11,13 and 35 as candidate genes for further exploration of the functions in abiotic stress. The extensive annotations and transcriptome profiling reported in this study ultimately provides the basis for MADS functional characterization in genetic engineering of barley and other gramineous crops.

8.
BMC Plant Biol ; 23(1): 267, 2023 May 19.
Article En | MEDLINE | ID: mdl-37208619

BACKGROUND: Barley (Hordeum vulgare L.) represents the fourth most essential cereal crop in the world, vulnerable to barley yellow mosaic virus (BaYMV) and/or barley mild mosaic virus (BaMMV), leading to the significant yield reduction. To gain a better understanding of the mechanisms regarding barley crop tolerance to virus infection, we employed a transcriptome sequencing approach and investigated global gene expression among three barley varieties under both infected and control conditions. RESULTS: High-throughput sequencing outputs revealed massive genetic responses, reflected by the barley transcriptome after BaYMV and/or BaMMV infection. Significant enrichments in peptidase complex and protein processing in endoplasmic reticulum were clustered through Gene ontology and KEGG analysis. Many genes were identified as transcription factors, antioxidants, disease resistance genes and plant hormones and differentially expressed between infected and uninfected barley varieties. Importantly, general response genes, variety-specific and infection-specific genes were also discovered. Our results provide useful information for future barley breeding to resist BaYMV and BaMMV. CONCLUSIONS: Our study elucidates transcriptomic adaptations in barley response to BaYMV/BaMMV infection through high-throughput sequencing technique. The analysis outcome from GO and KEGG pathways suggests that BaYMV disease induced regulations in multiple molecular-biology processes and signalling pathways. Moreover, critical DEGs involved in defence and stress tolerance mechanisms were displayed. Further functional investigations focusing on these DEGs contributes to understanding the molecular mechanisms of plant response to BaYMV disease infection, thereby offering precious genetic resources for breeding barley varieties resistant to BaYMV disease.


Hordeum , Mosaic Viruses , Hordeum/genetics , Plant Breeding , Disease Resistance/genetics , Gene Expression Profiling , Plant Diseases/genetics
9.
Free Radic Biol Med ; 202: 35-45, 2023 06.
Article En | MEDLINE | ID: mdl-36963639

Non-apoptotic necrosis shows therapeutic potential for the treatment of various diseases, especially cancer. Mitochondrial permeability transition (MPT)-driven necrosis is a form of non-apoptotic cell death triggered by oxidative stress and cytosolic Ca2+ overload, and relies on cyclophilin D (CypD). Previous reports demonstrated that isobavachalcone (IBC), a natural chalcone, has anticancer effect by apoptosis induction. Here, we found that IBC induced regulated necrosis in cancer cells. IBC triggered non-apoptotic cell death in lung and breast cancer cells mediated by reactive oxygen species (ROS). IBC caused mitochondrial injury and dysfunction as evidenced by mitochondrial Ca2+ overload, the opening of MPT pore, mitochondrial membrane potential collapse, and structural damages. IBC-triggered cell death could be remarkably reversed by the ROS scavengers, cyclosporin A (CsA) and hemin, whereas CypD silence and heme oxygenase-1 overexpression failed to do so. Protein kinase B, dihydroorotate dehydrogenase, and mitogen-activated protein kinases were not involved in IBC-induced necrosis as well. In addition, IBC showed an anticancer effect in a 4T1 breast cancer cell-derived allograft mouse model, and this effect was considerably reversed by CsA. Collectively, our results showed that IBC triggered non-canonical MPT-driven necrosis mediated by ROS in cancer cells, which might provide a novel strategy for fighting against cancer.


Mitochondrial Transmembrane Permeability-Driven Necrosis , Neoplasms , Mice , Animals , Reactive Oxygen Species/metabolism , Necrosis , Apoptosis , Cell Death , Peptidyl-Prolyl Isomerase F/pharmacology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Permeability
10.
Theor Appl Genet ; 136(1): 9, 2023 Jan.
Article En | MEDLINE | ID: mdl-36656369

KEY MESSAGE: A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.


Hordeum , Quantitative Trait Loci , Salt Tolerance/genetics , Hordeum/genetics , Calcium/metabolism , Sodium/metabolism , Salinity
11.
Front Plant Sci ; 13: 989406, 2022.
Article En | MEDLINE | ID: mdl-36507388

The cell wall plays an important role in plant mechanical strength. Cellulose is the major component of plant cell walls and provides the most abundant renewable biomass resource for biofuels on earth. Mutational analysis showed that cellulose synthase (CESA) genes are critical in cell wall biosynthesis in cereal crops like rice. However, their role has not been fully elucidated in barley. In this study, we isolated a brittle culm mutant brittle culm 3 (bc3) derived from Yangnongpi 5 ethyl methanesulfonate (EMS) mutagenesis in barley. The bc3 mutants exhibited reduced mechanical strength of the culms due to impaired thickening of the sclerenchyma cell wall and reduced cellulose and hemicellulose content in the culms. Genetic analysis and map-based cloning revealed that the bc3 mutant was controlled by a single recessive gene and harbored a point mutation in the HvCESA5 gene, generating a premature stop codon near the N-terminal of the protein. Quantitative real-time PCR (qRT-PCR) analysis showed that the HvCESA5 gene is predominantly expressed in the culms and co-expressed with HvCESA4 and HvCESA8, consistent with the brittle culm phenotype of the bc3 mutant. These results indicate that the truncated HvCESA5 affects cell wall biosynthesis leading to a brittle culm phenotype. Our findings provide evidence for the important role of HvCESA5 in cell wall biosynthesis pathway and could be a potential target to modify cell wall in barley.

12.
Front Pharmacol ; 13: 1001018, 2022.
Article En | MEDLINE | ID: mdl-36313350

Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18ß-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.

13.
PeerJ ; 10: e13128, 2022.
Article En | MEDLINE | ID: mdl-35317071

Background: The disease caused by Barley yellow mosaic virus (BaYMV) infection is a serious threat to autumn-sown barley (Hordeum vulgare L.) production in Europe, East Asia and Iran. Due to the rapid diversification of BaYMV strains, it is urgent to discover novel germplasm and genes to assist breeding new varieties with resistance to different BaYMV strains, thus minimizing the effect of BaYMV disease on barley cropping. Methods: A natural population consisting of 181 barley accessions with different levels of resistance to BaYMV disease was selected for field resistance identification in two separate locations (Yangzhou and Yancheng, Jiangsu Province, China). Additive main effects and multiplicative interaction (AMMI) analysis was used to identify accessions with stable resistance. Genome-wide association study (GWAS) of BaYMV disease resistance was broadly performed by combining both single nucleotide polymorphisms (SNPs) and specific molecular markers associated with the reported BaYMV disease resistance genes. Furthermore, the viral protein genome linked (VPg) sequences of the virus were amplified and analyzed to assess the differences between the BaYMV strains sourced from the different experimental sites. Results: Seven barley accessions with lower standardized Area Under the Disease Progress Steps (sAUDPS) index in every environment were identified and shown to have stable resistance to BaYMV disease in each assessed location. Apart from the reported BaYMV disease resistance genes rym4 and rym5, one novel resistance locus explaining 24.21% of the phenotypic variation was identified at the Yangzhou testing site, while two other novel resistance loci that contributed 19.23% and 19.79% of the phenotypic variation were identified at the Yancheng testing site, respectively. Further analysis regarding the difference in the VPg sequence of the predominant strain of BaYMV collected from these two testing sites may explain the difference of resistance loci differentially identified under geographically distinct regions. Our research provides novel genetic resources and resistance loci for breeding barley varieties for BaMYV disease resistance.


Disease Resistance , Potyviridae , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Potyviridae/genetics
14.
BMC Plant Biol ; 21(1): 560, 2021 Nov 25.
Article En | MEDLINE | ID: mdl-34823470

BACKGROUND: Barley yellow mosaic disease (BYMD) caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) seriously threatens the production of winter barley. Cultivating and promoting varieties that carry disease-resistant genes is one of the most powerful ways to minimize the disease's effect on yield. However, as the BYMD virus mutates rapidly, resistance conferred by the two cloned R genes to the virus had been overcome by new virus strains. There is an urgent need for novel resistance genes in barley that convey sustainable resistance to newly emerging virus strains causing BYMD. RESULTS: A doubled haploid (DH) population derived from a cross of SRY01 (BYMD resistant wild barley) and Gairdner (BYMD susceptible barley cultivar) was used to explore for QTL of resistance to BYMD in barley. A total of six quantitative trait loci (qRYM-1H, qRYM-2Ha, qRYM-2Hb, qRYM-3H, qRYM-5H, and qRYM-7H) related to BYMD resistance were detected, which were located on chromosomes 1H, 2H, 3H, 5H, and 7H. Both qRYM-1H and qRYM-2Ha were detected in all environments. qRYM-1H was found to be overlapped with rym7, a known R gene to the disease, whereas qRYM-2Ha is a novel QTL on chromosome 2H originated from SRY01, explaining phenotypic variation from 9.8 to 17.8%. The closely linked InDel markers for qRYM-2Ha were developed which could be used for marker-assisted selection in barley breeding. qRYM-2Hb and qRYM-3H were stable QTL for specific resistance to Yancheng and Yangzhou virus strains, respectively. qRYM-5H and qRYM-7H identified in Yangzhou were originated from Gairdner. CONCLUSIONS: Our work is focusing on a virus disease (barley yellow mosaic) of barley. It is the first report on BYMD-resistant QTL from wild barley accessions. One novel major QTL (qRYM-2Ha) for the resistance was detected. The consistently detected new genes will potentially serve as novel sources for achieving pre-breeding barley materials with resistance to BYMD.


Disease Resistance/genetics , Hordeum/genetics , Hordeum/virology , Plant Diseases/genetics , Potyviridae/pathogenicity , Quantitative Trait Loci , Chromosomes, Plant , Crops, Agricultural/genetics , Crops, Agricultural/virology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Haploidy , Plant Breeding/methods
15.
Neuroreport ; 32(12): 1065-1072, 2021 08 11.
Article En | MEDLINE | ID: mdl-34232128

Polydatin is the major active ingredient of Polygonum cuspidatum Sieb. Et Zucc. A recent study indicated that polydatin could protect against substantia nigra dopaminergic degeneration in rodent models associated with Parkinson's disease. However, mechanisms that underlie the neuroprotection of polydatin have not been fully elucidated. In the current study, the neuroprotective effects and detailed mechanisms of action of polydatin were investigated in Parkinson's disease-related cellular models. Polydatin dose- and time-dependently prevented neurotoxicity caused by 1-methyl-4-phenylpyridinium ion (MPP+) in primary cerebellar granule neurons. Moreover, we found that polydatin enhanced the activity of the transcription factor myocyte enhancer factor 2D (MEF2D) at both basal and pathological conditions using luciferase reporter gene assay. Additionally, western blot analysis revealed that polydatin could downregulate glycogen synthase kinase 3ß (GSK3ß), which is a negative regulator of MEF2D. Molecular docking simulations finally suggested an interaction between polydatin and a hydrophobic pocket within GSK3ß. All these results suggest that polydatin prevents MPP+-induced neurotoxicity via enhancing MEF2D through the inhibition of GSK3ß and that treatment with polydatin is worthy of further anti-Parkinson's disease study in future.


1-Methyl-4-phenylpyridinium/toxicity , Cell Survival/drug effects , Glucosides/pharmacology , Herbicides/toxicity , Neuroprotective Agents/pharmacology , Stilbenes/pharmacology , Animals , Animals, Newborn , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , MEF2 Transcription Factors/metabolism , PC12 Cells , Rats , Rats, Sprague-Dawley
16.
Front Pharmacol ; 12: 680336, 2021.
Article En | MEDLINE | ID: mdl-34248629

Diabetic kidney disease (DKD) is the leading cause of end-stage renal failure, but therapeutic options for nephroprotection are limited. Oxidative stress plays a key role in the pathogenesis of DKD. Our previous studies demonstrated that tetramethylpyrazine nitrone (TBN), a novel nitrone derivative of tetramethylpyrazine with potent free radical-scavenging activity, exerted multifunctional neuroprotection in neurological diseases. However, the effect of TBN on DKD and its underlying mechanisms of action are not yet clear. Herein, we performed streptozotocin-induced rat models of DKD and found that TBN administrated orally twice daily for 6 weeks significantly lowered urinary albumin, N-acetyl-ß-D-glycosaminidase, cystatin C, malonaldehyde, and 8-hydroxy-2'-deoxyguanosine levels. TBN also ameliorated renal histopathological changes. More importantly, in a nonhuman primate model of spontaneous stage III DKD, TBN increased the estimated glomerular filtration rate, decreased serum 3-nitrotyrosine, malonaldehyde and 8-hydroxy-2'-deoxyguanosine levels, and improved metabolic abnormalities. In HK-2 cells, TBN increased glycolytic and mitochondrial functions. The protective mechanism of TBN might involve the activation of AMPK/PGC-1α-mediated downstream signaling pathways, thereby improving mitochondrial function and reducing oxidative stress in the kidneys of DKD rodent models. These results support the clinical development of TBN for the treatment of DKD.

17.
Hum Mol Genet ; 30(16): 1484-1496, 2021 07 28.
Article En | MEDLINE | ID: mdl-33929499

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are serious neurodegenerative diseases. Although their pathogenesis is unclear, the abnormal accumulation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological feature that exists in almost all patients. Thus far, there is no drug that can cure ALS/FTLD. Tetramethylpyrazine nitrone (TBN) is a derivative of tetramethylapyrazine, derived from the traditional Chinese medicine Ligusticum chuanxiong, which has been widely proven to have therapeutic effects on models of various neurodegenerative diseases. TBN is currently under clinical investigation for several indications including a Phase II trial of ALS. Here, we explored the therapeutic effect of TBN in an ALS/FTLD mouse model. We injected the TDP-43 M337V virus into the striatum of mice unilaterally and bilaterally, and then administered 30 mg/kg TBN intragastrically to observe changes in behavior and survival rate of mice. The results showed that in mice with unilateral injection of TDP-43M337V into the striatum, TBN improved motor deficits and cognitive impairment in the early stages of disease progression. In mice with bilateral injection of TDP-43M337V into the striatum, TBN not only improved motor function but also prolonged survival rate. Moreover, we show that its therapeutic effect may be through activation of the Akt/mTOR/GSK-3ß and AMPK/PGC-1α/Nrf2 signaling pathways. In summary, TBN is a promising agent for the treatment of ALS/FTLD.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mice
18.
J Mol Neurosci ; 71(7): 1456-1466, 2021 Jul.
Article En | MEDLINE | ID: mdl-33403592

T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.


Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Hydrazones/therapeutic use , Neuroprotective Agents/therapeutic use , Pyrazines/therapeutic use , tau Proteins/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Avoidance Learning , Disease Models, Animal , Donepezil/pharmacology , Donepezil/therapeutic use , Drug Evaluation, Preclinical , Hydrazones/pharmacology , MAP Kinase Signaling System/drug effects , Memantine/pharmacology , Memantine/therapeutic use , Mice , Mice, Transgenic , Morris Water Maze Test , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Pyrazines/pharmacology , Random Allocation , Recognition, Psychology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
19.
Neuropharmacology ; 182: 108380, 2021 01.
Article En | MEDLINE | ID: mdl-33152451

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.


Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pyrazines/therapeutic use , Animals , Female , Hand Strength/physiology , Humans , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pyrazines/pharmacology , Superoxide Dismutase-1/biosynthesis , Superoxide Dismutase-1/genetics
20.
Aging (Albany NY) ; 12(14): 14897-14917, 2020 07 24.
Article En | MEDLINE | ID: mdl-32710729

T-006, a new derivative of tetramethylpyrazine, has been recently found to protect against 6-hydroxydopamine (6-OHDA)-induced neuronal damage and clear α-synuclein (α-syn) by enhancing proteasome activity in an α-syn transgenic Parkinson's disease (PD) model. The effect of T-006 on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model, however, has not been tested and T-006's neuroprotective mechanisms have not been fully elucidated. In this study, we further investigated the neuroprotective and neurogenic effects of T-006 and explored its underlying mechanism of action in both cellular and animal PD models. T-006 was able to improve locomotor behavior, increase survival of nigra dopaminergic neurons and boost striatal dopamine levels in both MPTP- and 6-OHDA-induced animals. T-006 treatment restored the altered expressions of myocyte enhancer factor 2D (MEF2D), peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1α (PGC1α) and NF-E2-related factor 1/2 (Nrf1/2) via modulation of Akt/GSK3ß signaling. T-006 stimulated MEF2, PGC1α and Nrf2 transcriptional activities, inducing Nrf2 nuclear localization. Interestingly, T-006 promoted endogenous adult neurogenesis toward a dopaminergic phenotype by activating brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in 6-OHDA rats. Our work demonstrated that T-006 is a potent neuroprotective and neuroregenerative agent that may have therapeutic potential in the treatment of PD.


Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hydrazones/pharmacology , MEF2 Transcription Factors/metabolism , Parkinson Disease , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pyrazines/pharmacology , Signal Transduction/drug effects , Animals , Disease Models, Animal , Mice , Neurogenesis/drug effects , Neurogenesis/physiology , Neuroprotection/drug effects , Neuroprotection/physiology , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Rats , Treatment Outcome
...